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Abstract. We consider the sub-dominant eigenstates of the transfer matrix for the square–
triangle random tiling model on an infinite strip of widthL. A numerical algorithm for generation
of the corresponding solution of the Bethe ansatz is developed. Numerical finite-size scaling
analysis of the associated eigenvalues reveals the presence of both integer and non-integer critical
exponents. Theanalytical value of one of the non-integer exponents is found. It is also shown
numerically that, along with the leadingL−2 correction to the free-energy density, for some
excitations there is a term proportional toL−12/5.

1. Introduction

The square–triangle random tiling model was first solved numerically by Bethe ansatz [1]
and then analytically in the thermodynamic limit [2]. The analytic solution provides the
exact values of the entropy and the phason susceptibility for the model, but neither of
these parameters is a universal quantity. At the same time, several intriguing features of
the analytic solution imply that the the model reaches criticality if the tiling possesses
six-fold rotational symmetry. In particular, the distribution of the roots of Bethe ansatz
equations is singular for six-fold symmetric tilings. It is of interest to figure out whether
this singularity has a physical significance. The results obtained so far suggest rather the
contrary, because the free energy of the system is a regular function of the only available
macroscopic parameters—the phason strains [2]. Nevertheless, one cannot exclude the
presence of hidden macroscopic variables, the behaviour of which becomes critical at this
point. This could be seen as a dramatic change in the long-range correlation functions of
these variables. The Bethe ansatz for the eigenstates of the transfer matrix is not sufficient
(except in rare cases) on its own to find the correlation functions. However, the numerical
data on the distribution of the eigenvalues near the top of the spectrum of the transfer
matrix provide circumstantial evidence on the macroscopic behaviour of the model. First of
all, the presence of an irrelevant operator can be detected by the behaviour of the next-to-
leading term in the dependence of the spacing of the sub-dominant eigenvalues on the size
of the system [3]. The other method, providing more precise information on the scaling
dimensions, is based on the hypothesis of conformal invariance. The case in point is the
so-called finite-size scaling approach [4, 5]. It is well known that the critical exponents
xi for two-dimensional statistical models which exhibit conformal symmetry in the critical
state are related to the spacings of the sub-dominant eigenvalues of the transfer matrix [6]

log(λ0)− log(λ) = 2π(n+ xi)
L

(1)
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where λ and λ0 are the eigenvalues of the excited and ground state correspondingly,n

is a non-negative integer and the model is formulated on a strip of widthL with periodic
boundary conditions. Another important relation links the finite-size correction to the density
of the free energy and the central charge of the corresponding conformal model [4, 5]

F0− F = πc

6L2
. (2)

In the present paper we analyse numerically some of the low-lying excitations and compare
the finite-size scaling data with formulae (1) and (2).

2. Creation of the low-lying excitations

Recall that the square–triangle random tiling model can be mapped on a lattice and that the
individual tilings can be conveniently described in terms of the world lines of right- and
left-moving particles [1, 2]. Following [2], the model is formulated on a strip of finite width
2M (after mapping) with periodic boundary conditions. For the states withn− right-moving
andn+ left-moving particles the equations of the Bethe ansatz take the form

e−MφξMi = (−1)n+−1
∏
j

(ξi − ψj) eMφψM
j = (−1)M+n−−1

∏
i

(ξi − ψj) (3)

where

ξi = exp(2ipi + φ) ψj = −exp(−2iqj − φ)
andpi andqj are the momenta of particles. The corresponding eigenvalue of the transfer
matrix is given by

3 = exp

(
i
∑
i

pi − i
∑
j

qj

)
.

Since the transfer matrix commutes with the translations along the periodic directions, the
eigenvalues may be characterized by the momentum as well. In terms of Bethe ansatz (3),
the momentum of an eigenstate is expressed as

P =
(∑

i

pi +
∑
j

qj

)
mod 2π.

The momentum is quantized in units ofπ/M because of the periodic boundary conditions:

m = M

π
P ∈ Z. (4)

The system of equations (3) hasM!/((M − n+ − n−)!n+!n−!) solutions, which satisfy
the condition that all rootsξi andψi are different. We are mainly interested in the solutions
which correspond to the low-lying excitations of the system. Although the behaviour of
the ground-state solution can be derived analytically in the thermodynamic limit, there
is no clear way of doing so for the sub-dominant eigenstates. Nevertheless, the numerical
solutions of system (3) can be found with full machine precision, allowing in its turn precise
determination of the finite-size scaling effects on the spectrum of the transfer matrix. At first
glance, numerical search of low-lying excitations can be performed by gentle perturbation of
the rootsξi andψj corresponding to the ground state, followed by the search of the nearest
root of system (3). This approach has two important drawbacks: it does not guarantee that
in the resulting solution all rootsξi andψj will be different, neither does it provide us with
a scheme of classification of the elementary excitations. This is why a different algorithm
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has been used to generate the solutions of (3) corresponding to the excited states of the
system.

Let us add the phase factors in the equations of the Bethe ansatz above:

e−MφξMi = ei8+i (−1)n+−1
∏
j

(ξi − ψj) eMφψM
j = ei8−j (−1)M+n−−1

∏
i

(ξi − ψj). (5)

Clearly, this system has physical meaning only if all phases8+i and8−j are multiples of
2π . The important feature of system (5) is that a continuous change in the phases8+i and
8−j induces continuous evolution of the rootsξi andψj for as long as no two of them
coincide. Thus, any trajectory in the space of phases8+i and8−j , connecting two points
which are multiples of 2π corresponds to a transformation of one solution of system (5) to
another. This fact forms the basis of the numerical algorithm for generation of the excited
eigenstates of the square–triangle random tiling. In a nutshell, this algorithm consists of
an adiabatic change in the phases8+i and8−j interleaved with the search for the nearest
solution of system (5). The merits of this algorithm with respect to that based on the random
perturbation of the roots of (3) are that it gives completely reproducible results and allows
us to generate the same excitation in systems of different size.

3. Numerical results

Before proceeding any further it is worth noting the important peculiarity of the square–
triangle random tiling model. Since this model is not initially formulated on a lattice,
applying the transfer matrix technique requires some sort of mapping it onto a lattice model
(see [1, 2]). The form of the mapping, in its turn, is sensitive to the state of the model,
in the sense that the distortion factor depends on the phason gradient. In the finite-size
scaling considerations the density of the free energy should be known with at least o(L−2)

accuracy, which implies the same precision in the measurement of the distortion factor.
To be on the safe side, only the excitations which do not modify the phason gradient are
considered from here on. This implies that the number of particles of each sortn+ and
n− and the parameterφ in (3) are kept constant. Another important restriction is due to
the fact that the density of the particles for the state with 12-fold symmetry is equal to
1− √3/3, i.e. an irrational number. That is, for an arbitrarily chosenM the deviation of
the real densityn±/M from the ideal value is of the order 1/M. The corresponding phason
gradient is of the same order, which gives rise to an O(L−2) deviation in the value of the
free-energy density. Fortunately, there exists a series of good rational approximations to the
ideal density, based on the continuous fractions, for whichn±/M = (1−

√
3/3)+O(M−2).

The corresponding denominators areM = 7, 26, 97, 362, 1351. . .. All numerical results
below are obtained for this series of values ofM andn±.

Whether or not the model possesses conformal symmetry at the critical point, the
conformal symmetry considerations only make sense if the rotational symmetry is preserved.
This is not the case for the mapping onto a lattice used in [2]. Thus, equation (1) only
makes sense if the true width of the stripL is used. This width, measured in the lengths
of the steps of the transfer matrix along the strip, is equal to 2M/

√
3 for the tilings with

12-fold symmetry. Thus, the parametern+ xi from (1) is related to the eigenvalues of the
transfer matrix as follows:

n+ xi = M(log(λ0)− log(λ))

π
√

3
. (6)

We start the consideration with the simplest finite-size effect: that of the dependence of
the free-energy density of the ground state on the size of the system. For conformal models,
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Table 1. The values of 6L2(F0−F)/π for different values ofM. For the conformal symmetric
models these values should converge to the central charge of the model in the limitM →∞.

M c

7 1.854 941 737 185 41(1)
26 1.980 571 089 403 0(2)
97 1.998 482 530 808(3)

362 1.999 890 306 60(5)
1351 1.999 992 122(1)
5042 1.999 999 46(2)
∞ 2.000 000 00(5)

the corresponding correction is related to the central charge of the model by formula (2).
It is interesting to see that, for the square–triangle random tiling, the numerical results (see
table 1) are consistent with the scaling (2), with the value of the central chargec = 2.
This observation is consistent with the recent result by de Gier and Nienhuis [7] that the
square–triangle random tiling is equivalent to a degenerate case of the O(n) model on the
honeycomb lattice. In fact, according to Reshetikhin [8] ifn 6 2 this model is critical at
zero temperature, and corresponds to an effective conformal field theory with central charge
c = 2.

The solutions of equations (3), obtained as described above, do not all correspond to
the eigenstates of the transfer matrix. In fact, the anti-symmetrization of the eigenfunction
with respect to the momenta of the particles of the same sort implies that these momenta
should be different. At the same time, the adiabatic change of±2π in one phase8+i or
8−j in most cases brings into existence, pairs of coinciding rootsξi or ψj . The reason is
that for the most of the rootsξi andψj the neighbouring positions are occupied. Only the
roots near the edges of the spectrum have room to move. The situation is somewhat similar
to that of the low-lying excitations in a Fermi liquid, the only difference being that the
dispersion law depends itself on the distribution of particles on the energy levels. Pursuing
the analogy with the one-dimensional Fermi liquid, one can expect that there are two types
of excitation—one involving the particles in the vicinity of a Fermi point, and the other
corresponding to the Umklapp process, i.e. giving rise to the transfer of a particle between
Fermi points. Both types of excitation can be generated by application of the described
algorithm.

Consider first the excitations which do not involve Umklapp processes. The simplest
possible case consists of moving a particle at the very end of the spectrum to the nearest
vacant position. One could expect that the resulting state depends on the choice of the
particle to move (is it a right- or a left-moving particle?). This is indeed almost always the
case, except when the excitation to the six-fold symmetric state of the model is considered.
In this case, the excitations of the right- and left-moving particle give rise to the same
solution of the Bethe ansatz equations! This can be seen graphically in figure 1, where the
corresponding configuration is shown for the ground state of the model. This peculiarity of
the six-fold symmetric states results from the fact that perturbation of the dispersion law
for particles of the other sort, due to such excitation, cannot be considered as small even in
the limit M →∞. The corresponding modification to the eigenvalue of the transfer matrix
is given in table 2.

The correction tends to 1 asM → ∞ to judge from the results of Richardson
extrapolation. The momentum (4) of this excitation corresponds tom = ±1. It is notable
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1.07
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1.11

Figure 1. The configuration of roots of the Bethe ansatz for the lowest-lying particle–hole
excitation near the ‘Fermi point’,M = 362. Circles and crosses representξi ψj correspondingly.

Table 2. The finite-size correction to the free-energy density for the lowest-lying excitation with
pseudo-time reversal symmetry.

M L(log(λ0)− log(λ))/2π

26 −0.934 247 009 9499(2)
97 −0.979 917 110 651(3)

362 −0.994 426 893 07(5)
1351 −0.998 492 640(1)
∞ −1.000 000 021(5)

that the singularity in the distribution of the roots of Bethe ansatz near the edge of the
spectrum has apparently no effect on the next to the leading terms in (1). In fact, the closest
to the integer extrapolation forM →∞ is obtained when using integer powers ofM. On
the other hand, taking into account that the distance between the roots of the Bethe ansatz
near the end of the spectrum scales asM−6/5, and using the qualitative arguments based
on the Euler–Maclaurin integration formula, one could predict the presence of the terms,
proportional toM−12/5 in the correction to the free-energy density. As we shall see, this is
indeed the case for some excitations.

To obtain more sub-dominant eigenstates, one can move the edge particles to the next
vacant position. The corresponding configurations of roots for the case of one and two
particles are shown on figures 2 and 3. The results for the energy of the eigenstate are
given in tables 3 and 4. The values seem to converge to 2 and 3 correspondingly, but the
slowness of the convergence stands out. Numerically, the closest to the integer answer is
obtained when Richardson extrapolation in the powers ofM−2/5 is used (see the arguments
above).

Consider now the excitations whereby a particle undergoes the Umklapp process. This
would correspond to a change in one of the phases8+i or 8−j of 2πn±. The same result
can be achieved by a simultaneous shift in all phases8+i (or 8−j ) by 2π . The latter is
preferable from the point of view of algorithmic efficiency. For the sake of simplicity, only
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Figure 2. The configuration of roots of the Bethe ansatz for the non-symmetric particle–hole
excitation,M = 18 817.

–0.06 –0.04 –0.02 0.00 0.02 0.04
1.03

1.05

1.07

1.09

1.11

Figure 3. The configuration of roots of the Bethe ansatz for the symmetric particle–hole
excitation,M = 1351.

the excitations which do not break the pseudo-time reversal symmetry are considered here.
This implies that both the left- and right-moving particles are involved in the Umklapp
process. The rescaled eigenvalues of the transfer matrix for the lowest lying excitation of
this type are shown in table 5. These values are obviously converging to a non-integer
number. In the next section we show how to obtain the analytic expression for it. It is
notable that the values of the momentum for this eigenstate increase with the size of the
system.
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Table 3. The finite-size correction to the free-energy density for the particle–hole excitation
without pseudo-time reversal symmetry (m = ±2).

M L(log(λ0)− log(λ))/2π

7 −0.594 659 300 564 40(1)+0.909 146 789 843 77(1)i
26 −1.059 131 344 659 1(2) +0.549 869 503 473 3(2)i
97 −1.388 303 436 012(3) +0.363 705 847 637(3)i

362 −1.618 747 777 70(5) +0.239 684 457 31(5)i
1 351 −1.768 008 478(1) +0.153 249 006(1)i
5 042 −1.860 708 03(2) +0.095 328 86(2)i

18 817 −1.916 978 5(3) +0.058 151 0(3)i
∞ −2.000 007(1) −0.000 005(1)i

Table 4. The finite-size correction to the free-energy density for the symmetric particle–hole
excitation, involving particles of two types (m = 3).

M L(log(λ0)− log(λ))/2π

97 −2.107 256 933 317(3)
362 −2.432 151 493 92(5)

1 351 −2.651 016 890(1)
5 042 −2.789 442 35(2)

18 817 −2.874 191 2(3)
∞ −3.000 048 0(5)

Table 5. The finite-size correction to the free-energy density and the momentum for the
symmetric Umklapp excitation.

M L(log(λ0)− log(λ))/2π m

26 −2.542 324 530 0753(2) ±4
97 −2.426 715 669 604(3) ±15

362 −2.418 993 512 67(5) ±56
1 351 −2.418 441 811(1) ±209
5 042 −2.418 402 21(2) ±780

18 817 −2.418 399 3(3) ±2911
∞ −2.418 399 1(5)

4. Analytic solution

The excitation for which an analytic solution in the thermodynamic limit is found can be
generated by simultaneous increase of all phases8+i and8−j by a multiple of 2π . Because
this perturbation does not give rise to the formation of holes in the sequences of the roots
ξi andψj of equations (3), it is natural to expect that the technique developed in [2] will
still be applicable to this case. Recall that for the ground state the rootsξi andψj of Bethe
ansatz equations (3) in the limitM →∞ are concentrated along the curves9 and4 on the
complex plane. This makes it possible to replace equations (3) by a system of two integral
equations in the thermodynamic limit [2]:

f+(ζ ) = 1/ζ + 1

2π i

∫ b+,2

b+,1

f−(z)dz
z − ζ f−(ζ ) = 1/ζ − 1

2π i

∫ b−,2

b−,1

f+(z)dz
z − ζ (7)



7084 P A Kalugin

Z

Re

Im

b

bb+,2

+,1b –,1

–,2

Figure 4. The integration paths for equations (7).

(the integration contours are shown on figure 4). The only degree of freedom left in (7) is
that of the choice of the limits of integrationb+,1, b+,2, b−,1 and b−,2. The total number
of real parameters is thus equal to eight. There are three additional constraints applied
to these parameters. First of all, two constraints are due to the condition that the forms
f− dz andf+ dz take pure imaginary values on the vectors tangent to the curves9 and4
correspondingly [2]. Consequently,

Re

(∫ b+,2

b+,1
f− dz

)
= 0 Re

(∫ b−,2

b−,1
f+ dz

)
= 0. (8)

Second, equations (7) leave the scale of the variablez undefined. The scale factor is lost in
(7) during the derivation from (3), and can be restored as described in [2]. This gives rise
to the additional constraint onb+,1, b+,2, b−,1 andb−,2.

The constraints described above leave five free parameters, which correspond to the
large-scale perturbations of the model. Three of them are related to the phason strains [2].
In the vicinity of the ground state the corresponding infinitesimal perturbations have the
form

b±,i → b±,i + ε + o(ε) i = 1, 2

for the phason strain with six-fold symmetry, and

b−,i → b−,i + ε + o(ε) b+,i → b+,i − ε + o(ε)

for the four-fold symmetric phason strain. Another degree of freedom is due to
the degeneration of the ground state of the system, and corresponds to simultaneous
multiplication of b+,1, b+,2, b−,1 and b−,2 by the common phase factor eiα. The last
perturbation, which is still consistent with the constraint (8), and is not reduced to the
rescaling ofz, has the form

b±,1→ b±,1(1+ ε + o(ε)) b±,2→ b±,2(1− ε + o(ε)) (9)

in the first order inε. We need, however, to keep up to the second order inε, because the
expected term is quadratic in the perturbation. More accurate algebra, similar to that used
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in [2] (see the appendix), gives rise to the following expressions:

log(b±,1) = log(6
√

3)−
√

3 log(2+
√

3)+ ε − ε2/6+ o(ε2)

log(b±,2) = log(6
√

3)−
√

3 log(2+
√

3)− ε − ε2/6+ o(ε2).
(10)

The corresponding correction to the entropy per vertex is computed in the same way, and
gives

σ = σ0− ε2/3+ o(ε2). (11)

It remains to find the value ofε, which corresponds to the elementary excitation under
consideration, that is to a simultaneous increase in the phases8+i and8−j by 2π . In the
terms of the integral equation (7) this means that the imaginary part of the integral

I =
∫ b±,1

0
f∓(z) dz (12)

is increased by 2π/M (this integral diverges atz = 0, but the imaginary part can be properly
regularized). Under the action of perturbation (10) the imaginary part ofI is increased by
ε (see the appendix), which gives rise to the following correction to the entropy per vertex:

σv − σv0 = − 4π2

3M2
. (13)

The corresponding critical exponentxi from (6) is equal to

4π

3
√

3
= 2.418 399 152. . .

which agrees well with the numerical results (see table 5).

5. Discussion

It is generally believed that the low-lying excitations in the statistical models reflect the
macroscopic and universal properties. Their study is of special interest in the case when the
slow variablesdescribing the system are not explicitly expressed through the microscopic
parameters of the model. This is the case for the square–triangle tiling model. The presented
results shed new light on the question formulated in [2]: ‘Are six-fold symmetric square–
triangle tilings really distinct from all others?’ The peculiar character of six-fold symmetric
states (in particular the twelve-fold symmetric one) is supported by the following arguments.
First, instead of two types of particle–hole excitation for a non-symmetric state (one for
right-moving particles, the other for left-moving ones) there is only one excitation of this sort
for the symmetric state. Second, the correction to the entropy density for some excitations
of the symmetric state as a function of the system sizeL contains next-to-leading termL−2

a contribution, proportional toL−12/5. Both effects are independent of the choice of the
representation of the model, which is to say that the six-fold symmetric state belongs to the
different universality class.

The spectrum of the transfer matrix does not give the full information on the nature of the
excitations. Nevertheless, the way the excitations have been generated gives an indication
of the corresponding local operators. As a matter of example, consider the particle–hole
excitation in the ideal Fermi liquid

|φ〉 =
( ∏
kmin<k<kmax

a
†
k

)
|0〉
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where |φ〉 is the ground state of the model. This state describes, in particular, random
tilings of plane by 60◦-rhombi [9, 10]. Such excitations can be created by the action of a
macroscopic density operator

ρ̂f =
∑
x

f (x)a†(x)a(x)

wheref (x) is a slow-varying function of a coordinatex. Pursuing the analogy with this
model, one might expect that the particle–hole excitations in the square–triangle random
tiling are related to the correlation functions of the density of right- and left-moving particles.
If this is the case, then the anomalousL−12/5 scaling of the correction to the entropy density
for two particle–hole excitations may reflect the presence of an irrelevant field with the
scaling dimension equal to12

5 in the product of two density operators [3].
If the hypothesis of the conformal invariance of the model holds for the ground state

(and for other states with six-fold symmetric phason gradient), then the absolute values of
the correction to the free-energy density are also to be taken into account. This means,
in particular, that there should be a field with the scaling dimension equal to 4π/3

√
3.

Whether or not the model exhibits the conformal symmetry in the thermodynamic limit is,
however, still an open question.

Appendix

This appendix is concerned with the derivation of the formulae for the symmetric Umklapp
excitation in the thermodynamic limit. First of all, we figure out the value ofε in (9),
which corresponds to the transfer of one particle from one Fermi point to another. In order
to compute the phase shift in (12) it is convenient to use the uniformization, similar to that
proposed in [2]

z = b±,1t6− b±,2
t6− 1

. (A1)

The poles of the formf±dz are situated at the points exp(π in/6) and exp(a+π i(n+1/2)/6)
on the plane of the complex variablet , where the parametera is related toε from (9)

ε = 3a + o(a).

In the considered case, whenb+,(1,2) = b−,(1,2) the formf± dz is rational in the variablet
(see [2]). The first derivative of the phase (12) with respect toa is given by

∂

∂a

∫ b±,1

0
f−(z) dz = 3ia.

The transfer of one particle corresponds to the shift in the imaginary part of (12) by 2π/M,
hence the corresponding value ofε is equal to

ε = 2π

M
.

Because the correction to the entropy density is of the second order inε, the values
of b±,(1,2) have to be computed with the same accuracy. They can be obtained from the
following condition

Re
∫ b±,(1,2)

∞

(√
3f± − 1

z

)
dz = − log(b±,(1,2))
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which gives rise to formula (10). The expression for the entropy per vertex in the case of
the symmetry between right- and left-moving particles can result from the equation

σv − log(b±,(1,2)) = Re
∫ b±,(1,2)

0

(
f± − 1

z

)
dz.

In the second order inε this gives

σv = σv0− ε2/3+ o(ε2)

whence follows the formula (13).
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